Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 200
Filtrar
1.
J Chem Neuroanat ; : 102413, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38492895

RESUMO

Chronic pain is often accompanied by tissue damage and pain hypersensitivity. It easily relapses and is challenging to cure, which seriously affects the patients' quality of life and is an urgent problem to be solved. Current treatment methods primarily rely on morphine drugs, which do not address the underlying nerve injury and may cause adverse reactions. Therefore, in recent years, scientists have shifted their focus from chronic pain treatment to cell transplantation. This review describes the classification and mechanism of chronic pain through the introduction of the characteristics of olfactory ensheathing cells (OECs), an in-depth discussion of special glial cells through the phagocytosis of nerve debris, receptor-ligand interactions, providing nutrition, and other inhibition of neuroinflammation, and ultimately supporting axon regeneration and mitigation of chronic pain. This review summarizes the potential and limitations of OECs for treating chronic pain by objectively analyzing relevant clinical trials and methods to enhance efficacy and future development prospects.

2.
Cell Commun Signal ; 22(1): 162, 2024 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448976

RESUMO

Microglia/macrophages are major contributors to neuroinflammation in the central nervous system (CNS) injury and exhibit either pro- or anti-inflammatory phenotypes in response to specific microenvironmental signals. Our latest in vivo and in vitro studies demonstrated that curcumin-treated olfactory ensheathing cells (aOECs) can effectively enhance neural survival and axonal outgrowth, and transplantation of aOECs improves the neurological outcome after spinal cord injury (SCI). The therapeutic effect is largely attributed to aOEC anti-inflammatory activity through the modulation of microglial polarization from the M1 to M2 phenotype. However, very little is known about what viable molecules from aOECs are actively responsible for the switch of M1 to M2 microglial phenotypes and the underlying mechanisms of microglial polarization. Herein, we show that Interleukin-4 (IL-4) plays a leading role in triggering the M1 to M2 microglial phenotype, appreciably decreasing the levels of M1 markers IL­1ß, IL­6, tumour necrosis factor-alpha (TNF-α) and inducible nitric oxide synthase (iNOS) and elevating the levels of M2 markers Arg-1, TGF-ß, IL-10, and CD206. Strikingly, blockade of IL-4 signaling by siRNA and a neutralizing antibody in aOEC medium reverses the transition of M1 to M2, and the activated microglia stimulated with the aOEC medium lacking IL-4 significantly decreases neuronal survival and neurite outgrowth. In addition, transplantation of aOECs improved the neurological function deficits after SCI in rats. More importantly, the crosstalk between JAK1/STAT1/3/6-targeted downstream signals and NF-κB/SOCS1/3 signaling predominantly orchestrates IL-4-modulated microglial polarization event. These results provide new insights into the molecular mechanisms of aOECs driving the M1-to-M2 shift of microglia and shed light on new therapies for SCI through the modulation of microglial polarization.


Assuntos
Curcumina , Traumatismos da Medula Espinal , Animais , Ratos , Microglia , Interleucina-4/farmacologia , Curcumina/farmacologia , Macrófagos , Traumatismos da Medula Espinal/terapia , Anti-Inflamatórios
3.
Environ Res ; 241: 117575, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37925127

RESUMO

PM2.5 exposure represents a risk factor for the public health. PM2.5 is able to cross the blood-alveolar and blood-brain barriers and reach the brain through three routes: nasal olfactory pathway, nose-brain pathway, blood-brain barrier pathway. We evaluated the effect of PM2.5 to induce cytotoxicity and reduced viability on in vitro cultures of OECs (Olfactory Ensheathing Cells) and SH-SY5Y cells. PM2.5 samples were collected in the metropolitan area of Catania, and the gravimetric determination of PM2.5, characterization of 10 trace elements and 16 polycyclic aromatic hydrocarbons (PAHs) were carried out for each sample. PM2.5 extracts were exposed to cultures of OECs and SH-SY5Y cells for 24-48-72 h, and the cell viability assay (MTT) was evaluated. Assessment of mitochondrial and cytoskeleton damage, and the assessment of apoptotic process were performed in the samples that showed lower cell viability. We have found an annual average value of PM2.5 = 16.9 µg/m3 and a maximum value of PM2.5 = 27.6 µg/m3 during the winter season. PM2.5 samples collected during the winter season also showed higher concentrations of PAHs and trace elements. The MTT assay showed a reduction in cell viability for both OECs (44%, 62%, 64%) and SH-SY5Y cells (16%, 17%, 28%) after 24-48-72 h of PM2.5 exposure. Furthermore, samples with lower cell viability showed a decrease in mitochondrial membrane potential, increased cytotoxicity, and also impaired cellular integrity and induction of the apoptotic process after increased expression of vimentin and caspase-3 activity, respectively. These events are involved in neurodegenerative processes and could be triggered not only by the concentration and time of exposure to PM2.5, but also by the presence of trace elements and PAHs on the PM2.5 substrate. The identification of more sensitive cell lines could be the key to understanding how exposure to PM2.5 can contribute to the onset of neurodegenerative processes.


Assuntos
Poluentes Atmosféricos , Neuroblastoma , Hidrocarbonetos Policíclicos Aromáticos , Oligoelementos , Humanos , Oligoelementos/metabolismo , Neuroblastoma/metabolismo , Linhagem Celular , Mitocôndrias/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/análise , Material Particulado/análise , Poluentes Atmosféricos/análise
4.
Neuropeptides ; 103: 102389, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37945445

RESUMO

BACKGROUND: Traumatic brain injury (TBI) often leads to cognitive and neurological dysfunction. Valproic acid (VPA) has a neuroprotective effect in acute central nervous system diseases; the neurotrophin 3 gene (NT-3) can maintain the survival of neurons, and olfactory ensheathing cells (OECs) can promote the growth of nerve axons. This study aimed to evaluate the restorative effect of VPA combined with NT-3 modified OECs (NT-3-OECs) on neurological function after TBI. METHODS: The neurological severity score (NSS) of rats was evaluated on the 1st, 7th, 14th, and 28th day after TBI modeling and corresponding intervention. Hematoxylin-eosin (HE) staining, p75 nerve growth factor receptor (P75), glial fibrillary acidic protein (GFAP), and neurofilament protein (NF)staining, and argyrophilic staining were used to observe the morphology of brain tissue 28 days after modeling. Moreover, TdT-mediated dUTP Nick-End Labeling (TUNEL) was used to detect the apoptosis rate of neurons. The changes in synapses and mitochondria in the injured area were observed by electron microscope. RESULTS: NT-3-OECs transplantation can increase the content of NT-3 in brain tissue, and NT-3-OECs can survive for >28 days. The NSS score of the TBI-VPA-NT-3-OECs group 28 days after cell transplantation was significantly lower than that of the other model treatment groups (P < 0.05). The morphological structure of the brain tissue was more complete, and the neurofilament fibers were neatly arranged, achieving better results than those of the other groups. The apoptosis rate of nerve cells in the TBI-VPA-NT-3-OECs group was significantly lower than in the other treatment groups (P < 0.05). Furthermore, the number of synapses in the combined intervention group was significantly higher than in the other treatment groups, and the mitochondrial structure was more complete. CONCLUSION: NT-3-OECs have good biological function, and VPA combined with NT-3-OECs transplantation can effectively improve the prognosis of TBI rats.


Assuntos
Lesões Encefálicas Traumáticas , Ácido Valproico , Ratos , Animais , Ratos Sprague-Dawley , Ácido Valproico/farmacologia , Lesões Encefálicas Traumáticas/terapia , Neurônios , Transplante de Células/métodos , Bulbo Olfatório
5.
Eur J Pharmacol ; 963: 176238, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38072039

RESUMO

Spinal cord injury (SCI) can lead to severe motor, sensory and autonomic nervous dysfunction, cause serious psychosomatic injury to patients. There is no effective treatment for SCI at present. In recent years, exciting evidence has been obtained in the application of cell-based therapy in basic research. These studies have revealed the fact that cells transplanted into the host can exert the pharmacological properties of treating and repairing SCI. Olfactory ensheathing cells (OECs) are a kind of special glial cells. The application value of OECs in the study of SCI lies in their unique biological characteristics, that is, they can survive and renew for life, give full play to neuroprotection, immune regulation, promoting axonal regeneration and myelination formation. The function of producing secretory group and improving microenvironment. This provides an irreplaceable treatment strategy for the repair of SCI. At present, some researchers have explored the possibility of treatment of OECs in clinical trials of SCI. Although OECs transplantation shows excellent safety and effectiveness in animal models, there is still lack of sufficient evidence to prove the effectiveness of their clinical application in clinical trials. There has been an obvious stagnation in the transformation of OECs transplantation into routine clinical practice, and clinical trials of cell therapy in this field are still facing major challenges and many problems that need to be solved. Therefore, this paper summarized and analyzed the clinical trials of OECs transplantation in the treatment of SCI, and discussed the problems and challenges of OECs transplantation in clinical trials.


Assuntos
Traumatismos da Medula Espinal , Animais , Humanos , Traumatismos da Medula Espinal/terapia , Transplante de Células , Neuroglia , Bulbo Olfatório , Regeneração Nervosa , Medula Espinal
6.
Brain Res ; 1825: 148732, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38104922

RESUMO

Trigeminal neuralgia (TN) is a common form of facial pain, which primarily manifests as severe pain similar to facial acupuncture and electric shock. Olfactory ensheathing cells (OECs) are glial cells with high bioactivity; these cells are essential for the periodic regeneration of the olfactory nerve and have been utilized for the repair of nerve injuries. A member of the P2X receptor family, P2X7R, is an ion channel type receptor that has been confirmed to participate in various pain response processes. In this study, we transplanted OECs into trigeminal nerve-model rats with distal infraorbital nerve ligation to observe the therapeutic effect of transplanted OECs in rats. Additionally, we utilized the P2X7R-specific inhibitor brilliant blue G (BBG) to study the therapeutic mechanisms of cell transplantation. The facial mechanical pain threshold of these rats significantly increased following cell transplantation. The immunohistochemistry, immunoblotting, and RT-qPCR results demonstrated that the levels of P2X7R, (NOD)-like receptor protein-3 (NLRP3), nuclear factor-κB (NF-κB), interleukin (IL)-1ß, and IL-18 in the trigeminal ganglion of rats treated with OEC transplantation or BBG treatment were significantly lower than those in the injured group without treatment. Overall, our results demonstrate that OEC transplantation can alleviate TN in rats, and it can reduce the expression of P2X7R related inflammatory factors in TN rats, reducing neuroinflammatory response in TG.


Assuntos
Neuralgia do Trigêmeo , Ratos , Animais , Neuralgia do Trigêmeo/tratamento farmacológico , Neuralgia do Trigêmeo/metabolismo , Ratos Sprague-Dawley , Dor Facial/metabolismo , Limiar da Dor/fisiologia , Transplante de Células/métodos , Bulbo Olfatório/metabolismo
7.
Nanotechnology ; 35(3)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37905427

RESUMO

Aim. The potential of olfactory ensheathing cells (OECs) as a cell therapy for spinal cord reconstruction and regeneration after injury has drawn significant attention in recent years. This study attempted to investigate the influences of nano-fibrous scaffolds on the growth status and functional properties of OECs.Methods.The ultra-morphology of the scaffolds was visualized using scanning electron microscopy (SEM). To culture OECs, donated cells were subcultured and identified with p75. Cell proliferation, apoptosis, and survival rates were measured through MTT assay, Annexin-V/PI staining, and p75 cell counting, respectively. The adhesion of cells cultured on scaffolds was observed using SEM. Additionally, the functions of OECs cultured on scaffolds were assessed by testing gene expression levels through real time polymerase chain reaction.Results.The electrospun type I collagen-based nano-fibers exhibited a smooth surface and uniform distribution. It was indicated that the proliferation and survival rates of OECs cultured on both randomly oriented and aligned type I collagen-based nano-fibrous scaffolds were higher than those observed in the collagen-coated control. Conversely, apoptosis rates were lower in cells cultured on scaffolds. Furthermore, OEC adhesion was better on the scaffolds than on the control. The expression levels of target genes were significantly elevated in cells cultured on scaffolds versus the controls.Conclusion.As a whole, the utilization of aligned collagen nanofibers has demonstrated significant advantages in promoting cell growth and improving cell function. These findings have important implications for the field of regenerative medicine and suggest that the approach may hold promise for the future therapeutic applications.


Assuntos
Nanofibras , Tecidos Suporte , Colágeno Tipo I/genética , Células Cultivadas , Colágeno
8.
Drug Dev Res ; 84(8): 1739-1750, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37769152

RESUMO

Glioblastoma multiforme (GBM) is the most invasive form of primary brain astrocytoma, resulting in poor clinical outcomes. Herpes simplex virus thymidine kinase/ganciclovir (HSV-TK/GCV) gene therapy is considered a promising strategy for GBM treatment. Since Connexin43 (Cx43) expression is reduced in GBM cells, increasing Cx43 levels could enhance the effectiveness of gene therapy. The present study aims to examine the impact of fluoxetine on HSV-TK/GCV gene therapy in human GBM cells using human olfactory ensheathing cells (OECs) as vectors. The effect of fluoxetine on Cx43 levels was assessed using the western blot technique. GBM-derived astrocytes and OECs-TK were Cocultured, and the effect of fluoxetine on the Antitumor effect of OEC-TK/GCV gene therapy was evaluated using MTT assay and flow cytometry. Our results showed that fluoxetine increased Cx43 levels in OECs and GBM cells and augmented the killing effect of OECs-TK on GBM cells. Western blot data revealed that fluoxetine enhanced the Bax/Bcl2 ratio and the levels of cleaved caspase-3 in the coculture of OECs-TK and GBM cells. Moreover, flow cytometry data indicated that fluoxetine increased the percentage of apoptotic cells in the coculture system. This study suggests that fluoxetine, by upregulating Cx43 levels, could strengthen the Antitumor effect of OEC-TK/GCV gene therapy on GBM cells.


Assuntos
Ganciclovir , Glioblastoma , Humanos , Ganciclovir/farmacologia , Ganciclovir/uso terapêutico , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Conexina 43/genética , Conexina 43/metabolismo , Conexina 43/uso terapêutico , Timidina Quinase/genética , Timidina Quinase/metabolismo , Timidina Quinase/uso terapêutico , Fluoxetina/farmacologia , Fluoxetina/uso terapêutico , Regulação para Cima , Terapia Genética , Antivirais/farmacologia
9.
Cell Transplant ; 32: 9636897231199319, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37771302

RESUMO

In the past decades, the properties of olfactory ensheathing cells (OECs) have been widely investigated. Studies have shown that transplantation of OECs cultured from the olfactory bulb mediates axonal regeneration, remyelination and restores lost functions in experimental central nervous system (CNS) injury models. Autologously sourcing the cells from the nasal mucosa or the olfactory bulb to treat patients with spinal cord injuries would be ideal, but the cell yield achieved may be inadequate to cover the surface area of the lesions typically encountered in human spinal cord contusion injuries. Therefore, banking allogenic cryopreserved olfactory bulb cells from donors or generating cell lines could provide a marked increase in cell stock available for transplantation. This study is undertaken in two control and two intervention groups. The control groups have lesions alone and lesions with collagen gel but without cells. The intervention groups have either transplantation of primary cultured olfactory bulb OECs (bOECs) encapsulated in collagen gel or cryopreserved bulb OECs (CbOECs) encapsulated in collagen gel. Here, we report that transplantation of cryopreserved rat bOECs encapsulated in collagen restored the loss of function in a vertical climbing test in a unilateral C6-T1 dorsal root injury model. The loss of function returns in 80% of rats with injuries in about 3 weeks comparable to that we observed after transplantation of primary cultured bOECs. The regeneration axons induced by the transplant are identified by neurofilament antibodies and ensheathed by OECs. Our results indicate that cryopreserved OECs retain their properties of inducing axon regeneration and restoring loss of function in the experimental model. This is a step forward to translate the research into future clinical applications.


Assuntos
Axônios , Traumatismos da Medula Espinal , Ratos , Humanos , Animais , Axônios/metabolismo , Transplante de Células/métodos , Regeneração Nervosa/fisiologia , Traumatismos da Medula Espinal/patologia , Bulbo Olfatório , Colágeno/metabolismo
10.
J Neuroimmune Pharmacol ; 18(3): 476-494, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37658943

RESUMO

Transplantation of curcumin-activated olfactory ensheathing cells (aOECs) improved functional recovery in spinal cord injury (SCI) rats. Nevertheless, little is known considering the underlying mechanisms. At the present study, we investigated the promotion of regeneration and functional recovery after transplantation of aOECs into rats with SCI and the possible underlying molecular mechanisms. Primary OECs were prepared from the olfactory bulb of rats, followed by treatment with 1µM CCM at 7-10 days of culture, resulting in cell activation. Concomitantly, rat SCI model was developed to evaluate the effects of transplantation of aOECs in vivo. Subsequently, microglia were isolated, stimulated with 100 ng/mL lipopolysaccharide (LPS) for 24 h to polarize to M1 phenotype and treated by aOECs conditional medium (aOECs-CM) and OECs conditional medium (OECs-CM), respectively. Changes in the expression of pro-inflammatory and anti-inflammatory phenotypic markers expression were detected using western blotting and immunofluorescence staining, respectively. Finally, a series of molecular biological experiments including knock-down of triggering receptor expressed on myeloid cells 2 (TREM2) and analysis of the level of apolipoprotein E (APOE) expression were performed to investigate the underlying mechanism of involvement of CCM-activated OECs in modulating microglia polarization, leading to neural regeneration and function recovery. CCM-activated OECs effectively attenuated deleterious inflammation by regulating microglia polarization from the pro-inflammatory (M1) to anti-inflammatory (M2) phenotype in SCI rats and facilitated functional recovery after SCI. In addition, microglial polarization to M2 elicited by aOECs-CM in LPS-induced microglia was effectively reversed when TREM2 expression was downregulated. More importantly, the in vitro findings indicated that aOECs-CM potentiating LPS-induced microglial polarization to M2 was partially mediated by the TREM2/nuclear factor kappa beta (NF-κB) signaling pathway. Besides, the expression of APOE significantly increased in CCM-treated OECs. CCM-activated OECs could alleviate inflammation after SCI by switching microglial polarization from M1 to M2, which was likely mediated by the APOE/TREM2/NF-κB pathway, and thus ameliorated neurological function. Therefore, the present finding is of paramount significance to enrich the understanding of underlying molecular mechanism of aOECs-based therapy and provide a novel therapeutic approach for treatment of SCI.


Assuntos
Microglia , Mucosa Olfatória , Traumatismos da Medula Espinal , Animais , Ratos , Anti-Inflamatórios/farmacologia , Apolipoproteínas E/metabolismo , Apolipoproteínas E/farmacologia , Apolipoproteínas E/uso terapêutico , Curcumina/metabolismo , Curcumina/farmacologia , Curcumina/uso terapêutico , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Microglia/metabolismo , NF-kappa B/metabolismo , Recuperação de Função Fisiológica , Transdução de Sinais , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/metabolismo , Mucosa Olfatória/metabolismo , Mucosa Olfatória/transplante
11.
Mol Neurobiol ; 60(12): 6883-6895, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37515671

RESUMO

The pathology of spinal cord injury (SCI), including primary and secondary injuries, primarily involves hemorrhage, ischemia, edema, and inflammatory responses. Cell transplantation has been the most promising treatment for SCI in recent years; however, its specific molecular mechanism remains unclear. In this study, bioinformatics analysis verified by experiment was used to elucidate the hub genes associated with SCI and to discover the underlying molecular mechanisms of cell intervention. GSE46988 data were downloaded from the Gene Expression Omnibus dataset. In our study, differentially expressed genes (DEGs) were reanalyzed using the "R" software (R v4.2.1). Functional enrichment and protein-protein interaction network analyses were performed, and key modules and hub genes were identified. Network construction was performed for the hub genes and their associated miRNAs. Finally, a semi-quantitative analysis of hub genes and pathways was performed using quantitative real-time polymerase chain reaction. In total, 718 DEGs were identified, mainly enriched in immune and inflammation-related functions. We found that Cd4, Tp53, Rac2, and Akt3 differed between vehicle and transplanted groups, suggesting that these genes may play an essential role in the transplantation of olfactory ensheathing cells, while a toll-like receptor signaling pathway was significantly enriched in Gene set enrichment analysis, and then, the differences were statistically significant by experimentally verifying the expression of their associated molecules (Tlr4, Nf-κb, Ikkß, Cxcl2, and Tnf-α). In addition, we searched for upstream regulatory molecules of these four central genes and constructed a regulatory network. This study is the first to construct a regulatory network for olfactory ensheathing cell transplantation in treating SCI, providing a new idea for SCI cell therapy.


Assuntos
Traumatismos da Medula Espinal , Humanos , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/terapia , Terapia Baseada em Transplante de Células e Tecidos , Biologia Computacional , Quinase I-kappa B , Inflamação
12.
Pharmaceutics ; 15(3)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36986742

RESUMO

We have already formulated solid lipid nanoparticles (SLNs) in which the combination of the neurotransmitter dopamine (DA) and the antioxidant grape-seed-derived proanthocyanidins (grape seed extract, GSE) was supposed to be favorable for Parkinson's disease (PD) treatment. In fact, GSE supply would reduce the PD-related oxidative stress in a synergic effect with DA. Herein, two different methods of DA/GSE loading were studied, namely, coadministration in the aqueous phase of DA and GSE, and the other approach consisting of a physical adsorption of GSE onto preformed DA containing SLNs. Mean diameter of DA coencapsulating GSE SLNs was 187 ± 4 nm vs. 287 ± 15 nm of GSE adsorbing DA-SLNs. TEM microphotographs evidenced low-contrast spheroidal particles, irrespective of the SLN type. Moreover, Franz diffusion cell experiments confirmed the permeation of DA from both SLNs through the porcine nasal mucosa. Furthermore, fluorescent SLNs also underwent cell-uptake studies by using flow cytometry in olfactory ensheathing cells and neuronal SH-SY5Y cells, evidencing higher uptake when GSE was coencapsulated rather than adsorbed onto the particles.

13.
Antioxidants (Basel) ; 12(3)2023 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-36978998

RESUMO

Astaxanthin, a natural compound of Haematococcus pluvialis, possesses antioxidant, anti-inflammatory, anti-tumor and immunomodulatory activities. It also represents a potential therapeutic in Alzheimer's disease (AD), that is related to oxidative stress and agglomeration of proteins such as amyloid-beta (Aß). Aß is a neurotoxic protein and a substrate of tissue transglutaminase (TG2), an ubiquitary protein involved in AD. Herein, the effect of astaxanthin pretreatment on olfactory ensheathing cells (OECs) exposed to Aß(1-42) or by Aß(25-35) or Aß(35-25), and on TG2 expression were assessed. Vimentin, GFAP, nestin, cyclin D1 and caspase-3 were evaluated. ROS levels and the percentage of cell viability were also detected. In parallel, delayed luminescence (DL) was used to monitor mitochondrial status. ASTA reduced TG2, GFAP and vimentin overexpression, inhibiting cyclin D1 levels and apoptotic pathway activation which induced an increase in the nestin levels. In addition, significant changes in DL intensities were particularly observed in OECs exposed to Aß toxic fragment (25-35), that completely disappear when OECs were pre-incubated in astaxantin. Therefore, we suggest that ASTA pre-treatment might represent an innovative mechanism to contrast TG2 overexpression in AD.

14.
Cell Tissue Bank ; 24(2): 471-484, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36396867

RESUMO

The highly debilitated nature of spinal cord injuries (SCI) creates an inhibitory repair environment that limits the recovery rate and therefore single interventional treatment has been resulted in incomplete recovery. A multifactorial approach that combines several therapeutic approaches may address diverse aspects of SCI pathology and enhance the recovery rate over single therapy. Accordingly, in this study, we aimed to investigate the effect of combined olfactory ensheathing cells (OECs) (to transport trophic factor, mediate immunomodulation, provide a suitable environment for cell survival), G-CSF (to establish a favorable environment for cell survival) and lipopolysaccharide (LPS) (to boost the protective activity of OEC) therapy on the cell viability after a scratch injury caused by a cataract knife on cells in an in-vitro model of spinal-derived neural injury. In this study, we used mixed neuronal-glial cultures, which are widely used for an in vitro study of neuronal damage. Scratch insult was made on cells using a cataract knife. The cells were divided into 8 groups (two control groups with and without olfactory ensheathing cells (OECs) treatment, injury group, three injury groups with single therapy by using super low dose of LPS (SLD-LPS) (100 pg/ml), OEC group, and G-CSF (100 ng/ml) group, and two injury groups with combined therapy (OEC with SLD-LPS and with all three treatments)). We found a significant decrease in the survival rate of injured cells (p < 0.001) 24 h after scratching insult. Our results indicated morphological alterations in cells in the acute phase (1, 2 and 6 h) after injury, with significant increased gap size at 6 h after induction of injury. Our combined therapy, significantly prevented cell death and decreased the size of the gap over time. We found that combined therapy promoted cell survival following spinal injury by providing a neuroprotective environment for cells. Therefore, our findings provide new insight into the combined therapy, which can be considered for promising preclinical therapeutic strategy for SCI toward clinical trials.


Assuntos
Traumatismos da Medula Espinal , Traumatismos da Coluna Vertebral , Humanos , Sobrevivência Celular , Lipopolissacarídeos/farmacologia , Regeneração Nervosa/fisiologia , Células Cultivadas , Traumatismos da Medula Espinal/terapia , Traumatismos da Medula Espinal/patologia
15.
Mol Neurobiol ; 60(2): 789-806, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36371572

RESUMO

The therapeutic application of neural stem cells (NSCs) in the central nerve system (CNS) injury is a promising strategy for combating irreversible neuronal loss. However, a variety of obvious inflammatory responses following nerve injury rapidly create an unfavorable microenvironment for survival and neuronal differentiation of NSCs in lesion area, limiting the efficacy of NSC-based therapy for CNS injury. It remained unknown how to effectively increase the neuronal differentiation efficiency of NSCs through transplantation. Here, we demonstrated that curcumin (CCM)-activated olfactory ensheathing cells (aOECs) effectively promoted neuronal differentiation of NSCs in the activated microglial inflammatory condition, and co-transplantation of aOECs and NSCs improved neurological recovery of rats after spinal cord injury (SCI), as evidenced by higher expression levels of neuronal markers and lower expression levels of glial markers in the differentiated cells, greater number of Tuj-1-positive cells as well as higher Basso, Beattie, and Bresnahan (BBB) locomotor scale, compared to the corresponding controls. Pathologically, hematoxylin and eosin (HE) staining and immunostaining also showed that aOECs remarkably enhanced the in vivo neuronal differentiation of NSCs and migration, and nerve repair. Further analysis revealed that the underlying mechanisms of aOECs potentiating the neuronal conversion of NSCs under inflammatory environment were tightly associated with up-regulation of anti-inflammatory cytokines and neurotrophic factors in OECs, and importantly, the activation of Wnt3/ß-catenin pathway was likely involved in the mechanisms underlying the observed cellular events. Therefore, this study provides a promising strategy for SCI repair by co-transplantation of aOECs and NSCs.


Assuntos
Células-Tronco Neurais , Traumatismos da Medula Espinal , Ratos , Animais , Regulação para Cima , beta Catenina/metabolismo , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/patologia , Diferenciação Celular , Proteína Wnt3/metabolismo , Proteína Wnt3/farmacologia
16.
Nat Sci (Weinh) ; 2(3)2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36311264

RESUMO

The origin of the neurons and glia in the olfactory system of vertebrates has been controversial, with different cell types attributed to being of ectodermal placode versus neural crest lineage, depending upon the species. Here, we use replication incompetent avian (RIA) retroviruses to perform prospective cell lineage analysis of either presumptive olfactory placode or neural crest cells during early development of the chick embryo. Surprisingly, the results reveal a dual contribution from both the olfactory placode and neural crest cells to sensory neurons in the nose and Gonadotropin Releasing Hormone (GnRH) neurons migrating to the olfactory bulb. We also confirm that olfactory ensheathing glia are solely derived from the neural crest. Finally, our results show that neural crest cells and olfactory placode cells contribute to p63 positive cells, likely to be basal stem cells of the olfactory epithelium. Taken together, these finding provide evidence for previously unknown contributions of neural crest cells to some cell types in the chick olfactory system and help resolve previous discrepancies in the literature.

17.
Life Sci ; 311(Pt A): 121132, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36309223

RESUMO

AIMS: Glioblastoma multiforme (GBM) is the most malignant type of brain tumor resistant to current treatments. Recently, suicide gene therapy with the Herpex Simplex Virus thymidine kinase (HSV-tk) gene has been developed with high therapeutic potency, even in clinical trials. The primary challenge to establishing a gene therapy strategy is how to transfer the desired gene into the tumor site. The olfactory ensheathing cells (OECs) secreting neurotropic and anti-inflammatory factors have a high migration capacity, making them applicable for gene therapy. We examined our new construct OECs containing the HSV-tk gene for their migration and tumoricidal ability in animal models of GBM. MAIN METHODS: Isolated OECs were transduced by the HSV-tk gene (OEC-tks). OEC-tks or PBS were injected ipsilaterally or contralaterally into the tumor-bearing rats, followed by gancyclovir (GCV) or PBS administration. At the end of the treatment, tumor size, apoptosis, and animal survival were assessed. KEY FINDINGS: Our findings demonstrated that tumor size was significantly decreased in OEC-tks ipsilateral and contralateral groups, followed by GCV injections. Furthermore, both groups' pro-apoptotic protein and gene expressions were up-regulated, whereas Bcl-2 protein expression was down-regulated. Besides, apoptosis in the OEC-tks ipsilateral/GCV group was higher in the intratumoral region, and this percentage was higher in the OEC-tks contralateral/GCV group in the peritumoral region. Interestingly, our new construct increased animal survival rate and reduced body weight loss. SIGNIFICANCE: OECs could serve as a novel carrier for gene therapy, have a high migration capability to the GBM and eventually suppress tumor progression.


Assuntos
Glioblastoma , Ratos , Animais , Glioblastoma/terapia , Glioblastoma/tratamento farmacológico , Timidina Quinase/genética , Células Tumorais Cultivadas , Terapia Genética , Ganciclovir/farmacologia , Ganciclovir/uso terapêutico , Simplexvirus/genética , Simplexvirus/metabolismo , Antivirais/uso terapêutico
18.
Bull Exp Biol Med ; 173(4): 529-533, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36058977

RESUMO

We developed a viral vector Ad5/35-CAG-mBDNF expressing the mature form of BDNF (mBDNF). On the basis of olfactory ensheathing cells transduced with this adenovector, a new gene-cell construct was obtained. In experiments in vitro, high viability of the transduced olfactory ensheathing cells and enhanced secretion of BDNF by these cells were observed. It is possible that a new gene-cell construct will significantly increase the regenerative effects of transplanted olfactory ensheathing cells.


Assuntos
Mucosa Olfatória , Traumatismos da Medula Espinal , Fator Neurotrófico Derivado do Encéfalo , Vetores Genéticos/genética , Humanos , Regeneração Nervosa/genética , Bulbo Olfatório , Medula Espinal , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/terapia
19.
In Vivo ; 36(5): 2032-2041, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36099107

RESUMO

BACKGROUND/AIM: The regeneration of a completely damaged spinal cord is still a challenge in modern medicine. A promising treatment method is autologous transplantation of olfactory ensheathing cells (OECs). This study aimed primarily to test methods of culturing OECs with the use of materials and reagents that are certified for pharmaceutical use in the production of an advanced cell therapy product intended for humans. MATERIALS AND METHODS: The culture of OECs was performed using various modifications of the surface of the culture vessels (with fibronectin and poly-D-lysine). The number of cells was assessed after immunofluorescence staining using anti-fibronectin and anti-p75 NGF receptor antibodies. The study compared, in terms of surgical manipulations, scaffolds with OECs prepared based on 3 types of collagen: Acid Solubilized Telo Collagen and Pepsin Solubilized Atelocollagen, and the popular Corning collagen. RESULTS: We have shown that when suspending OECs in collagen gel, it is much better to use acid-solubilized collagen (ASC) than pepsin-solubilized collagen (PSC) because the 3D collagen scaffold from ASC provides much easier handling of the product during a surgical procedure. We also found that the OEC cultures should be grown on the surface modified with fibronectin. Furthermore, we have also shown that the optimal concentration of fetal bovine serum (FBS) for culturing these cells should be around 10%. CONCLUSION: The culture of OECs based on reagents intended for human use can be successfully carried out, obtaining sufficient OECs content in the heterogeneous cell culture to produce a functional advanced therapy medicinal product.


Assuntos
Regeneração da Medula Espinal , Células Cultivadas , Colágeno , Humanos , Bulbo Olfatório , Pepsina A
20.
J Chem Neuroanat ; 125: 102149, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36058434

RESUMO

In mammals, reproductive function is under the control of hypothalamic neurons named Gonadotropin-Releasing Hormone (GnRH) neurons. These neurons migrate from the olfactory placode to the brain, during embryonic development. For the past 40 years, these neurons have been considered an example of tangential migration, i.e., dependent on the olfactory/vomeronasal/terminal nerves. Numerous studies have highlighted the factors involved in the migration of these neurons but thus far overlooked the cellular microenvironment that produces them. Many of these factors are dysregulated in hypogonadotropic hypogonadism, resulting in subfertility/infertility. Nevertheless, over the past ten years, several papers have reported the influence of glial cells (named olfactory ensheathing cells [OECs]) in the migration and differentiation of GnRH neurons. This review will describe the atypical origins, migration, and differentiation of these neurons, focusing on the latest discoveries. There will be a more specific discussion on the involvement of OECs in the development of GnRH neurons, during embryonic and perinatal life; as well as on their potential implication in the development of congenital or idiopathic hypogonadotropic hypogonadism (such as Kallmann syndrome).


Assuntos
Hormônio Liberador de Gonadotropina , Síndrome de Kallmann , Animais , Adulto , Humanos , Movimento Celular/fisiologia , Neuroglia , Neurônios/fisiologia , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...